The 2018 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET)
"Embracing Future Trends in Electronics & Telecommunications"
Serpong-Indonesia, November 1-2, 2018

Conference Tracks:
- Remote Sensing and Radar System
- Antenna Devices and Techniques
- RF and Microwave Theory and Devices
- Electronics Materials, Devices, Components, and Circuits
- Wireless and Wired Communications
- Signal and Image Processing Techniques

Invited Speakers:
- Dr.-Ing. Hutomo Suryo Wasisto
 TU Braunschweig, Germany
- Prof. Chao-Sung Lai
 Chang Gung University (CGU), Taiwan
- Prof. Dr. Sevia M. I. Sutan Nameh
 UTM, Malaysia
- Dr. Purwoko Adhi Dipl.Ing., DEA
 Indonesian Institute of Sciences

Important dates:
- Call for paper: February 6, 2018
- Extended Final submission: August 31, 2018
- 1st Notification of accepted paper: September 3, 2018
- 2nd Notification of accepted paper: September 14, 2018
- Final registration: October 1, 2018
- Camera ready: October 5, 2018
- Conference event: November 1-2, 2018

Secretariat:
Research Center for Electronics and Telecommunications, LIPI.
Jl. Sangkuriang 154 D, Bandung
40135, Indonesia
Tel.: +6222-2504660, 2504661
Fax.: +62-22-2504659
Email: icramet@mail.lipi.go.id

Submission and registration:
http://situs.opi.lipi.go.id/icramet2018/
Organizer

Advisory Board

Prof. Dr. Ir. Bambang Subiyanto M.Agr. (Chairman of Indonesian Institute of Sciences)
Dr. Laksana Tri Handoko (Deputy Chairman for Engineering Sciences of the Indonesian Institute of Sciences)
Dr. Purwoko Adhi, Dipl. Ing, DEA (Head of Research Center for Electronics and Telecommunications, Indonesian Institute of Science)

Scientific Committee and Editorial Board

L.P. Ligthart (TU Delft, Netherland)
T.K. Sarkar (Syracuse University, New York, USA)
J. T. S. Sumantyo (Chiba University, Japan)
M. Krairiksh (King Mongkut's Institute of Technology Ladkrabang, Thailand)
M. Alaydrus (Mercu Buana University, Indonesia)
H. Murata (Osaka University, Japan)
T. Kawanishi (Waseda University, Japan)
M. Arshad (Jazan University, Kingdom of Saudi Arabia)
W.Z. Khan (Jazan University, Kingdom of Saudi Arabia)
J. Yunas (The Institute of Microengineering and Nanoelectronics, Malaysia)
H. Riza (Agency for The Assessment and Applications of Technology, Indonesia)
A.B. Suksmono (School of Electronics and Informatics, Bandung Institute of Technology, Indonesia)
A. Kurniawan (School of Electronics and Informatics, Bandung Institute of Technology, Indonesia)
E.T. Raharjo (University of Indonesia, Indonesia)
T. Adiono (School of Electronics and Informatics, Bandung Institute of Technology, Indonesia)
A.A. Lestari (International Research Centre for Telecommunications and Radar-Indonesia, Indonesia)
M. Wahab (Research Center for Electronics and Telecommunication LIPI, Indonesia)
Y. Wahyu (Research Center for Electronics and Telecommunication LIPI, Indonesia)
J.T.S. Sumantyo (Chiba University, Japan)
G. Wiranto (Research Center for Electronics and Telecommunication LIPI, Indonesia)
Dedi (Research Center for Electronics and Telecommunication LIPI, Indonesia)
Hiskia (Research Center for Electronics and Telecommunication LIPI, Indonesia)
W. Adi (National Nuclear Energy Agency, Indonesia)
G. Sugandi (Research Center for Electronics and Telecommunication LIPI, Indonesia)
F. Yuli (University of Indonesia, Indonesia)
E. Bharata (International Research Centre for Telecommunications and Radar-Indonesia, Indonesia)
N. Rachmana (School of Electronics and Informatics, Bandung Institute of Technology, Indonesia)
N.M. Nursam (Indonesian Institute of Science)
S.H. Pramono (University of Brawijaya, Indonesia)
I. Baig (Federal Urdu University of Arts, Science and Technology, Pakistan)
R.S.A. Abdullah (University Putra Malaysia, Malaysia)
B.D.Y. Majlis (University Kebangsaan Malaysia, Malaysia)
K. Wastuwiwibowo (IEEE Indonesia Section, Indonesia)
Irwanti (IEEE Indonesia Section, Indonesia)
J. Webber (Advanced Telecommunications Research Institute International, Japan)
N. Armi (Jazan University, Kingdom of Saudi Arabia)
U. Vishnoi (R&D of Data Storage IC, Marvell Semiconductor Inc., USA)
J. Abdullah (Universiti Tun Hussein Onn, Malaysia)
W. Adi (National Nuclear Energy Agency of Indonesia, Indonesia)
Taufiquarrahman (National Taiwan University of Science and Technology, Taiwan)
O. Heriana (King Fahd University of Petroleum and Minerals, Kingdom of Saudi Arabia)
E.D. Kurniawan (National Tsing Hua University, Taiwan)
I. Syamsu (Technische Universität Braunschweig, Germany)
R. I. Wijaya (Technische Universität Braunschweig, Germany)
R. P. H. Adjie (Technische Universität Braunschweig, Germany)
K. Xu (University of Electronic Science and Technology of China, P.R. China)
A. Subekti (Indonesian Institute of Sciences)
T. Nordström (Halmstad University, Sweden)
H. Parsede (Indonesian Institute of Sciences)
H. Fakhrurojo (Indonesian Institute of Sciences)
A. Abdurrochman (Padjadjaran University, Indonesia)
I. Purnama (Indonesian Institute of Sciences)
F. Simanjuntak (Tohoku University, Japan)
R. Szabolcs (Öbuda University, Hungary)
T. Zygirdis (University of Western Macedonia, Greece)
J. Simatupang (President University, Indonesia)
S.-H. Lee (University of South Australia)
I.M. Joni (Padjadjaran University, Indonesia)
D. Novita (Padjadjaran University, Indonesia)
M. Syai’in (Shipbuilding Institute of Polytechnic Surabaya, Indonesia)
A. Benfdila (University M. Mammeri Tizi-Ouzou, Algeria)
A. Ali (National Defense University of Malaysia, Malaysia)
E. Prakasa (Indonesian Institute of Sciences)
E. Yazid (Indonesian Institute of Sciences)
H. Prasetyo (Sebelas Maret University, Indonesia)
V. Singh (National Physical Laboratory, India)
S. Patil (SVKM's NMIMS Mumbai, India)
Taufik (California Polytechnic State University, USA)
R. Ngoma (The Copperbelt University, Zambia)

Organizing Committee

Conference Chair
R.V. Manurung (Research Center for Electronics and Telecommunication LIPI, Indonesia).

Conference Vice-Chair
B.A. Prabowo (Research Center for Electronics and Telecommunication LIPI, Indonesia)

Technical Program Committee Chairs
Y.N. Wijayanto (Research Center for Electronics and Telecommunication LIPI, Indonesia)

Secretary
Y. Radiansah (Research Center for Electronics and Telecommunication LIPI, Indonesia)
Publications

I.D.P. Hermida (Research Center for Electronics and Telecommunication LIPI, Indonesia)
P. Putranto (Research Center for Electronics and Telecommunication LIPI, Indonesia)
W. Desvasari (Research Center for Electronics and Telecommunication LIPI, Indonesia)
C.A. Wael (Research Center for Electronics and Telecommunication LIPI, Indonesia)
Y.S. Amrulloh (Research Center for Electronics and Telecommunication LIPI, Indonesia)
O. Heriana (Research Center for Electronics and Telecommunication LIPI, Indonesia)

Public Relation and Documentation

Lisdiani (Research Center for Electronics and Telecommunication LIPI, Indonesia)
A.N. Rahman (Research Center for Electronics and Telecommunication LIPI, Indonesia)
Tentative Schedule of ICRAMET 2018
Meeting room GARUDA 15, ICE-BSD

Thursday - November 1, 2018

- 07.30 - 08.30 Registration
- 08.30 - 09.00 **Opening ceremony**
- 09.00 - 09.15 Photo session
- 09.15 - 10.00 **Leading talk 1**
- 10.00 - 10.15 Coffee break
- 10.15 - 11.00 **Industrial talk**
- 11.00 - 11.45 **Leading talk 2**
- 12.00 - 13.00 Lunch break
- 13.00 - 15.00 **Oral session I**
- 15.00 - 15.15 Coffee break
- 15.15 - 17.45 **Oral session II**

Friday - November 2, 2018

- 07.30 - 08.30 Registration
- 08.30 - 09.15 **Leading talk 3**
- 09.15 - 10.00 **Leading talk 4**
- 10.00 - 10.15 Coffee break
- 10.15 - 12.00 **Oral session III**
- 12.00 - 13.30 Lunch break
- 13.30 - 15.00 **Oral session IV**
- 15.00 - 15.15 Coffee break
- 15.15 - 17.15 **Oral session V**
- 17.15 - 17.30 **Closing ceremony**
Oral session I

<table>
<thead>
<tr>
<th>Time</th>
<th>Author</th>
<th>Title of paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.00 – 13.15</td>
<td>Kama Azura Othman</td>
<td>Study of Micro-Doppler Effect on Target Spinning and Precession for Bistatic Radar</td>
</tr>
<tr>
<td>13.15 – 13.30</td>
<td>Wazir Zada Khan, Muhammad Numan, Fazli Subhan, Nasrullah Armi and Basem Assiri</td>
<td>Well-Organized Bully Election Algorithm in Distributed System</td>
</tr>
<tr>
<td>13.30 – 13.45</td>
<td>Omar A Saraerah and Jeevani Jayasinghe</td>
<td>Miniature antennas with nature-inspired geometries for Bluetooth applications</td>
</tr>
<tr>
<td>13.45 – 14.00</td>
<td>Nurhanifyah Azura, Edi Kurniawan, Bambang Widiyatmoko and Dwi Bayuwati</td>
<td>Sliding Mode Repetitive Controller for a Plant with Time-Varying Sampling Times</td>
</tr>
<tr>
<td>14.00 – 14.15</td>
<td>Jo-Yen Nieh and Yuan-Pin Cheng</td>
<td>Precise Range and Doppler Estimation of Multi-Nonstationary Targets by LFM Pulse-Doppler Radars</td>
</tr>
<tr>
<td>14.30 – 14.45</td>
<td>Tuncay Eren and Aydin Akan</td>
<td>Channel Estimation for Filtered OFDM Systems in Frequency Selective and High Speed Multipath Channels</td>
</tr>
<tr>
<td>14.45 – 15.00</td>
<td>Josef Matondang and Yudi Adityawarman</td>
<td>Implementation of APRS Network Using LoRa Modulation Based KISS TNC</td>
</tr>
</tbody>
</table>

Oral session II

<table>
<thead>
<tr>
<th>Time</th>
<th>Author</th>
<th>Title of paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.15 – 15.30</td>
<td>Wazir Zada Khan, Mohammed Aalsalem, Hussein Zangoti, Muhammad Zahid and Muhammad Khalil Afzal</td>
<td>Internet of Things based Physical and Environmental Monitoring System for Data Centers</td>
</tr>
<tr>
<td>15.30 – 15.45</td>
<td>Yuran Si</td>
<td>Utilization of Opportunistic-Bits with Paired Transmissions</td>
</tr>
<tr>
<td>15.45 – 16.00</td>
<td>Hendri Saputra, Rifa Rahmayanti and Dominique Leonard</td>
<td>Analysis of Wind Direction using Speed on Three Vertical Propellers</td>
</tr>
<tr>
<td>16.00 – 16.15</td>
<td>Yohanes Galih Adhiyoga and Eko Tjipto Rahardjo</td>
<td>Antenna Miniaturization using Artificial Magneto-Dielectric Material with Split-Ring Slot</td>
</tr>
<tr>
<td>16.15 – 16.30</td>
<td>Dalmasius Ganjar Subagjo, Abdurrahman Nurhakim, Renaldi Anggriawan, Hendri Saputra, Ridwan Arief Subekti, RAS and Ahmad Rajani</td>
<td>Digital Portable Morse Code Signaling Device Based on Intermittent Light</td>
</tr>
<tr>
<td>16.30 – 16.45</td>
<td>Yana Taryana, Yaya Sulaeman and Arie Setiawan</td>
<td>Design Rectifier at Rectenna for Wireless Power Transfer in The Frequency of 2.45 GHz</td>
</tr>
</tbody>
</table>
Oral session III

<table>
<thead>
<tr>
<th>Time</th>
<th>Author</th>
<th>Title of paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.15 – 10.30</td>
<td>Nor Ayu Zakaria</td>
<td>Investigation on Electromagnetic Wave Exposure Level from Mobile Base Station Around Residential Area</td>
</tr>
<tr>
<td></td>
<td>Chaeriah Bin Ali Wael, Nasrullah Armi, Dayat Kurniawan, Yahya Syukri Amrullah and Ros Sariningrum</td>
<td>NC-OFDM Transceiver Design for Maritime Cognitive Radio</td>
</tr>
<tr>
<td>10.30 – 10.45</td>
<td>Efri Sandi, Wisnu Djamtiko and Raka Kurnia</td>
<td>Design of Electromagnetic Band Gap to Improved Sidelobe Level for S-Band Antenna</td>
</tr>
<tr>
<td>10.45 – 11.00</td>
<td>Ihan Martoyo, Henri Uranus, Herman Kanalebe and Marincan Pardede</td>
<td>Software Defined Radio Applications for Mini GSM BTS and Spectrum Analyzer with BladeRF</td>
</tr>
<tr>
<td>11.00 – 11.15</td>
<td>Zuhani Ismail Khan</td>
<td>Electromagnetic field (EMF) Measurement for Public Safety Exposure Level</td>
</tr>
<tr>
<td>11.30 – 11.45</td>
<td>Teuku Yuliar Arif, Agus Firdiansyah and Rizal Munadi</td>
<td>Enhancement of Adaptive Auto Rate Fallback with Collision Detection for IEEE 802.11n/ac WLANs</td>
</tr>
<tr>
<td>11.45 – 12.00</td>
<td>Rifa Rahmayanti</td>
<td>Optimizing Motor Power Consumption of Two-DoF Manipulator using Genetic Algorithm</td>
</tr>
</tbody>
</table>

Oral session IV

<table>
<thead>
<tr>
<th>Time</th>
<th>Author</th>
<th>Title of paper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chaeriah Bin Ali Wael, Nasrullah Armi, Dayat Kurniawan, Yahya Syukri Amrullah and Ros Sariningrum</td>
<td>NC-OFDM Transceiver Design for Maritime Cognitive Radio</td>
</tr>
<tr>
<td>14.00 – 14.15</td>
<td>Agus Subekti, Hilman F Pardede, Rika Sustika and Suyoto</td>
<td>Spectrum Sensing for Cognitive Radio using Deep Auto encoder Neural Network and SVM</td>
</tr>
<tr>
<td>14.15 – 14.30</td>
<td>Galang Hakim, Mudrik Alaydrus and Ahmad Firdausi</td>
<td>Microstrip Antenna Array for Next Generation WLAN Applications</td>
</tr>
<tr>
<td>14.45 – 15.00</td>
<td>Iman Firmansyah and Yusuf Nur Wijayanto</td>
<td>2D Stencil Computation on Cyclone V SoC FPGA using OpenCL</td>
</tr>
</tbody>
</table>

Oral session V
15.30 – 15.45
Topik Teguh Estu, Vivi Fauzia and Yuyu Wahyu
Design 4-Element Flexible Microstrip Patch Array Antenna Using Silver Nanowires (AgNWs) and Polydimethylsiloxane (PDMS) for WLAN Application

15.45 – 16.00
Dayat Kurniawan, Yaya Sulaeman, Robeth V Manurung, I Dewa Putu Hermida and Ana Heryana
Development Precision Farming based Modular Multi Node Sensor

16.00 – 16.15
Asih Setiarini, Gandi Sugandi, Yusuf Nur Wijayanto, Goib Wiranto, Robeth V Manurung dan I Dewa Putu Hermida
A Novel Structure of Electromagnetic MEMS Speaker for Hearing Aid Application
Design of Electromagnetic Band Gap to Improved Sidelobe Level for S-Band Antenna

Efri Sandi, Raka Kurnia and Wisnu Djamniko

Department of Electrical Engineering, Faculty of Engineering, Universitas Negeri Jakarta
Jalan Rawamangun Muka Jakarta Timur, Indonesia 13220
Phone: 021-4751523, Fax: 021-47864808
Email: efri.sandi@unj.ac.id

Abstract—The design of electromagnetic band gap (MEBG) to reduce the mutual coupling effect on array antenna is proposed in this paper. The proposed design model of EBG structure is mushroom like EBG (MEBG). The MEBG design is used for microstrip array antenna at frequency S-band radar antenna. Reducing the mutual coupling effect is expected to increase the sidelobe level (SLL) performance. The proposed MEBG structure is placed between the patch elements to reduce mutual coupling effect of each element at a distance of 0.13λ. The simulation results for the proposed design show slightly reduce the mutual coupling and an increase SLL performance compared to array antenna without MEBG.

Keywords—Mushroom Electromagnetic band gap (MEBG); Radar antenna; S-Band Radar; Mutual Coupling; Sidelobe Level (SLL).

I. INTRODUCTION

Electromagnetic band-gap (EBG) structure with various configurations has been widely applied for antenna development, especially in the array antenna to obtain smaller size and radiation efficiency [1]. In the array antenna to get high performance, a large number of elements are needed and will affect the size of the antenna to be large. Placing the antenna array elements close to each other is one way to reduce the size of the antenna, but this will have an impact on increasing mutual coupling which is highly correlated with the distance between the elements and the relative orientation of each element's radiation. Mutual coupling generated between array antenna elements will affect the characteristics and decrease in array antenna performance [2].

One solution to reduce the effect of mutual coupling is applying the EBG structure to the array antenna configuration [3]. Design techniques for using EBG structures to reduce mutual coupling effects and improve array antenna performance have been proposed in a number of literature [2]-[4]. The configuration of uniplanar compact electromagnetic band-gap (UC-EBG) provides characteristic to reduce in mutual coupling of 10dB and antenna size reduction 0.13λ compared to conventional array antenna structures [2]. Another solution is apply the combination method by using one-dimensional electromagnetic band-gap (1-D EBG) with the split ring resonator (SRR) structure placed between antenna monopole elements. The Combination of 1-D EBG and SRR were experimentally shown to very effective in suppressing mutual coupling in a wideband. The roles of the 1-D EBG and SRR structures design are identified to be a reflector and wave trap [3]. It is significantly can reduce the back lobes and be able to increase radiation efficiency [3]. Besides that the use of EBG structures is also applied to waveguide-slot antenna arrays. Using a Mushroom-like design EBG structure placed over the radiating face of a 2x4 waveguide-slot-array antenna can reduce significantly external mutual coupling compared without using EBG structures [4]. This method highly simplifies waveguide-slot-array antenna design and shown that EBG structure are a powerful tool in mutual coupling reduction [4].

The EBG structures are basically able to increase isolation between array antenna elements [5]. This structure is designed to produce high impedance from electromagnetic wave propagation along the surface of the microstrip antenna structure [6]. With high impedance generating capabilities, EBG structures are also applied in MIMO antenna applications [7]. Wearable wireless body area network [8] and antenna for wireless body sensor network in medical application [9].

In the MIMO for antenna application for handsets was designed using a 1-D EBG ground structure to achieved superior isolation and low correlation. The 1-D EBG structures and monopole antenna elements could be placed very close each other due to reflection characteristics [7]. It is occurs because 1-D EBG structure produces greater isolation and smaller correlation coefficients. The 1-D EBG structure reduced surface current on the common ground plane suppresses the coupling between antenna elements and improves isolation each other [7].

In the certain application such as wearable applications, EBG cell sizes can be made miniature so that they can achieve of wearable devices requirement [8]. The EBG structure is used to eliminate the mismatch and frequency shifting caused of human body [9]. The EBG structure can minimize the effects caused by bending loss and reduce unwanted radiation toward the human body [9].

In radar antenna applications, improving performance by minimizing antenna size is a challenge. One approach to minimize antenna size is to make the distance between elements more close, but it will impact to the degradation of antenna performance due to the mutual coupling effect.

In this paper, the MEBG structure design to reduce the mutual coupling effect was observed. The MEBG design is used for microstrip array antenna at frequency S-band radar antenna.
II. DESIGN OF ANTENNA AND EBG

A. Antenna Design

The proposed microstrip antenna is designed numerically by using CST microwave studio software to operate at 3 GHz S-band radar frequency. Design of microstrip antennas using FR4-Epoxy substrate with a thickness of 1.6 mm. The Overall microstrip antenna dimensions resulting from design optimization are 76 mm x 76 mm for substrate material and 23 mm x 14.5 mm for patch antennas as shown in Fig. 1.

![Fig. 1, Single Element Design Microstrip Antenna](image)

In the study to observe the effect of MEBG structure, the sample array antenna was designed with 3 elements as shown in Fig. 2. Microstrip array antennas are designed using a single feeding system for each element.

![Fig. 2, Microstrip Array 3 Elements: (a) Top View; (b) Back View](image)

B. MEBG Design

MEBG structure design was developed based on four parts, ground plane, dielectric substrate, metallic patches and connecting vias [10]. Working principle of EBG structure based on LC filter on array antenna structure. This LC value will affect surface wave propagation on the microstrip antenna structure [10]. L and C values that can be expressed based on the formula [11]:

\[L = \mu_0 h \] \hspace{1cm} (1)

\[C = \frac{W \varepsilon_0 (1 + \varepsilon_0) \cos h}{\pi} \frac{(2W + g)}{g} \] \hspace{1cm} (2)

\(\mu_0 \) is the permeability of free space, \(h \) is substrate thickness, \(W \) is EBG structure patch width, \(g \) is gap between two EBG cell and \(\varepsilon_0 \) is permittivity of free space. By following L and C, the frequency of the band-gap structure can be predicted.

Follow above formula (1) and (2), the proposed MEBG design for the 3 GHz microstrip antenna as shown in Fig. 3. The proposed design consists of the construction of the MEBG cell and the gap between the cells. The proposed patch width is \(W = 4.254 \, mm \) and the gap between cell is \(g = 3.746 \, mm \).

![Fig. 3, Proposed MEBG Design: (a) Design of MEBG Cell; (b) Schematic of Array Antenna and MEBG Cell.](image)

III. RESULT AND DISCUSSION

The proposed MEBG structure is placed between the patch elements to reduce the coupling effect of each element. The MEBG Cell structure is placed in the middle of two patch element arrays with a distance of \(\lambda/8 \) from the edge of the patch as shown in Fig. 4.

The simulation result of microstrip antenna S-band using MEBG cell between patch as shown in Table 1. The MEBG effect is obtained by comparing the mutual coupling and SLL parameter using MEBG structure and without MEBG structure.
The radiation pattern performances comparison is showed in Fig. 5. This result shows that the use of MEBG can slightly improve SLL performance compared to without using MEBG. Although these results have not shown a significant improvement in SLL performance, these results conclude that the addition of the MEBG structure can improve the SLL performance of the microstrip array antenna. The simulation results show that the addition of three cell line from the MEBG structure can improve SLL performance by -1 dB. Thus, it can be predicted that the addition of more lines of MEBG structure will significantly improve SLL performance.

TABLE I. PERFORMANCE COMPARISON

<table>
<thead>
<tr>
<th>No.</th>
<th>Performances at 3 GHz</th>
<th>Without MEBG</th>
<th>Using MEBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Return Loss (dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S11</td>
<td>-17.86</td>
<td>-26.74</td>
</tr>
<tr>
<td></td>
<td>S22</td>
<td>-17.48</td>
<td>-27.78</td>
</tr>
<tr>
<td></td>
<td>S33</td>
<td>-17.37</td>
<td>-27.42</td>
</tr>
<tr>
<td>2</td>
<td>Mutual Coupling (dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S12</td>
<td>-24.64</td>
<td>-25.02</td>
</tr>
<tr>
<td></td>
<td>S21</td>
<td>-24.64</td>
<td>-25.02</td>
</tr>
<tr>
<td></td>
<td>S13</td>
<td>-32.15</td>
<td>-32.36</td>
</tr>
<tr>
<td></td>
<td>S31</td>
<td>-32.76</td>
<td>-33.02</td>
</tr>
<tr>
<td></td>
<td>S23</td>
<td>-24.29</td>
<td>-24.61</td>
</tr>
<tr>
<td></td>
<td>S32</td>
<td>-24.29</td>
<td>-24.61</td>
</tr>
</tbody>
</table>

In the future research will be developed with more MEBG structures around the patch elements. Thus there will be an effect on increasing performance to be significant.

IV. CONCLUSION

A design of MEBG structure to reduce the mutual coupling and improve SLL performance has been described. The MEBG design was developed on the S-Band frequency for radar applications. The simulation result of proposed design was shown the SLL performances better than array antenna without additional MEBG cell structure. Therefore in the future research will be developed more MEBG structures around the patch elements to improved SLL performance significantly.

ACKNOWLEDGEMENT

The authors would like to acknowledge for PKUPT UNJ and FT Research Grant, Universitas Negeri Jakarta, the Ministry of Research, Technology and Higher Education the Republic of Indonesia.

REFERENCES

