Abstract

This study aims to determine the effect of learning strategies and metacognition on the learning outcomes of mathematics by controlling the initial knowledge of mathematics. This research conducted at SMK Negeri 7 Bekasi during March to May 2018, an used a quasi experimental method with a 2x2 by level design. A sample of 64 students was randomly chosen. ANCOVA two way applied to analyzed the data obtained at the significant level of 0.05. The result indicate that: (1) Mathematics learning outcomes of students who are taught with inquiry learning strategies are higher than expository learning strategies, after controlling the initial knowledge of mathematics; (2) There is an influence of the interaction between learning strategies and metacognition on the learning outcomes of mathematics after controlling the initial knowledge of mathematics; (3) Mathematics learning outcomes learned by inquiry learning strategies in students who have high metacognition are higher than expository learning strategies after controlling the initial knowledge of mathematics; (4) Mathematics learning outcomes taught by inquiry learning strategies in students who have low metacognition are lower than expository learning strategies after controlling the initial knowledge of mathematics.

Keywords: Inquiry, Expository; Metacognition; Initial Knowledge; Learning Outcomes

1 Introduction

Education plays a very important role in improving the quality of human resources in a country. Education is an absolute thing that must be fulfilled in an effort to improve the standard of living of the Indonesian people so that they are not left behind by other nations. In achieving national education goals a set of supporting curricula is needed to be given to students at the level of their respective education units such as elementary school education units, junior and senior high school education units. One science that has an important role in the world of education is mathematics. Mathematics in addition can develop independently, also develops on the demands of other fields. Therefore mastery of material in mathematics needs to be improved, because it is related and is widely used to solve problems in everyday life.
Mathematics emphasizes solving a problem. In implementing learning, students must be able to master mathematical concepts to be able to solve a problem in mathematics. Students are required to be able to think critically in finding and finding solutions to the problems given. Whether or not the achievement of mathematics learning goals is achieved can be assessed from the success of students in solving mathematical problems, especially the story problems associated with everyday life, students must be able to understand the problem and find solutions to these problems. To find out the ability of students in the implementation of learning required evaluation, then analyzed and given a solution to the solution, so that students can find out the location of mistakes made in solving a problem. With the provision of problem-solving solutions it is expected that student learning outcomes will increase.

KTSP 2006 which was perfected in the 2013 curriculum included the objectives of mathematics learning as follows: 1) understanding mathematical concepts, explaining the relationship between concepts and applying concepts or algorithms flexibly, accurately, efficiently, and precisely in problem solving, 2) using reasoning in patterns and nature, making mathematical manipulations in generalizing, compiling evidence, or explaining mathematical ideas and statements, 3) solving problems, 4) communicating ideas with symbols, tables, diagrams, or other media to clarify the situation or problem, and 5) having an attitude appreciate the usefulness of mathematics in life, attitude of curiosity, attention, and interest in learning mathematics, as well as tenacious attitude and confidence in problem solving (Hendriana & Soemarno, 2014).

Preliminary observations on mathematics subject teachers at SMK Negeri 7 Bekasi, researchers found that mathematics learning uses a learning method in the form of lectures. With this learning method the interest in learning mathematics becomes low. Students do not want to ask the teacher because they feel embarrassed, lack confidence, and are afraid even though some are not yet understood. Achievement of good mathematics learning outcomes if students can achieve the KKM score (Minimum Completion Criteria). Mathematics KKM at SMK Negeri 7 Bekasi in the 2018/2019 school year is 75. So from the KKM criteria, students are declared to have succeeded if they get a minimum score of 75. If they get a score below 75, students must repeat or follow remedial. Mathematics learning outcomes are still not optimal. To achieve KKM, teachers make various efforts to improve student learning outcomes such as giving assignments at home, group assignments and discussions. One effort is used to improve student learning outcomes by applying learning strategies. Learning strategies are expected to change the atmosphere of learning activities to be more interesting and make students more enthusiastic and active in learning. The learning strategy applied uses inquiry learning strategies and expository learning strategies.

In addition, metacognition also greatly affects the achievement of student learning outcomes. Metacognition is one's knowledge of their own thought processes. Learners must have metacognition, to better understand the cognitive processes that occur in themselves in order to improve all cognitive activities. Metacognition is seen as an important component, because it allows students to get to know the cognitive system. This allows students to be able to coordinate the use of knowledge with a number of strategies in achieving learning objectives. Students should be helped to become more aware of their metacognitive. In order for effective learning, students must be guided not only to master knowledge, but to be able to
understand their own cognitive strengths and weaknesses. The development of metacognitive awareness is triggered by the development of cognitive skills themselves (Oz, 2016).

Statistics and opportunity material is one of the material on mathematics subjects that is taught to students at the level of Vocational High School (SMK) especially in class XI. This material requires a deep understanding of concepts in its application to be completed. Most students have difficulty in understanding what is meant in the problem, thus giving rise to errors in problem solving. As stated by Herlinda, Mardiyan and Triyanto that based on the teaching experience of teachers in Vocational High Schools is said that teaching a mathematical concept is a difficult thing. Students are able to solve problems with calculations and solve almost the same questions exemplified by the teacher, but it will be difficult if the questions are changed into other forms of questions and if made in a matter of stories (Fatmawati, Mardiyan & Triyanto, 2014).

Basically the mistakes of students in solving math problems are caused by a lack of accuracy and calculation in solving problems. This is in line with the research conducted by Effandi Zakaria and Siti Mistima Maat relating to students' mistakes in solving mathematical problems that occur in misunderstanding and mistakes in the skills process. So to improve learning outcomes students need metacognitive skills in order to manage cognitive skills and find weaknesses that will be corrected with subsequent cognitive skills (Zakaria & Maat, 2010).

Based on the reality in the field, it is necessary to understand learning strategies that can improve student learning outcomes through an active, enjoyable and mutually helpful learning process among students. This is what makes researchers think it is important to examine the effect of learning strategies and metacognition on the mathematics learning outcomes of students in SMK. Learning strategies that will be studied are expository learning strategies and inquiry learning strategies. In addition to learning strategies, metacognition of students is also needed which supports the learning process, thus improving student learning outcomes. This is in line with the research conducted by Ingole regarding "Interactive Effect of Meta-Cognitive Strategies Based Instruction in Mathematics on Meta-Cognitive Awareness of Students". This study concluded that the metacognition strategy has proven effective in increasing knowledge of cognition and regulation, about cognition of students. Metacognition strategies can be used effectively for mathematics learning (Ingole, Pandya, 2016).

Other research related to the strategy of metacognition in mathematics learning was also conducted by Toit regarding "Metacognitive Strategies in Teaching and Learning of Mathematics". This study concludes that the metacognitive strategies identified in this study can serve as a guide in ensuring effective teaching and helping students to learn and learn mathematics effectively. This recommends that teachers and students be assisted with the implementation of all metacognitive strategies in mathematics teaching and learning, especially those used for the least level by teachers and students (Toit & Kotze, 2009).

2 Literature Review
2.1 Learning Strategies

To achieve optimal learning outcomes a learning strategy is needed. These activities must be organized, designed and managed in such a way that the learning process can be carried out properly. According to Eggen and Kauchak, strategy is a general approach to teaching that applies in various fields of material and is used to fulfill various learning
objectives. It means that the strategy is a pattern that is planned intentionally to carry out activities or actions, the strategies applied in learning activities are called learning strategies. Review and feedback are teaching strategies (Eggen & Kauchak, 2010).

Dick and Carey stated that learning strategies usually explain the general components of a set of material and learning procedures that will be used with other materials to express certain learning outcomes from the student's side. Dick and Carey explained five components of the learning strategy, namely: (1) preliminary activities, (2) delivery of information, (3) student participation, (4) tests, and (5) further activities (Walter Dick, 2009). Gagne, et. al states that learning systems can also be called learning environments because both phrases refer to a set of elements that interact in the process of promoting and supporting learning activities (Gagne. at al, 2004). Gagne et. al stated that external events of learning consisted of nine sequences of learning activities, namely: (1) giving motivation or attracting students' attention, (2) explaining learning objectives to students, (3) reminding competency prerequisites, (4) providing stimulus by presenting material learning, (5) giving instruction in learning, (6) giving rise to student appearance, (7) giving feedback, (8) assessing appearance and (9) concluding (M. Gagne. at al, 2004). The ninth activity is not all done in the learning process depending on student characteristics and learning objectives to be achieved.

Branch explains that learning strategies are an organization and details or specifications of activities in learning (Branch, 2009). Spector et. al explained that a learning strategy includes those involving student activities with a model, this often refers to the mental theory of the model (Spector, 2014). According to Miarsok, learning strategies are a holistic approach to learning in a learning system, which is in the form of general guidelines and frameworks of activities to achieve the general objectives of learning, which are described from a philosophical perspective and or certain learning theories (Miarsok, 2009). The point is that the learning strategy is an outline of the direction to act in an effort to achieve a predetermined goal.

Suyono and Hariyanto said that the learning strategy is a series of activities in the learning process related to student management, teacher management, management of learning activities, management of the learning environment, management of learning resources and assessment so that learning is more effective and efficient in accordance with the learning objectives (Suyono, 2011).

2.2. Metacognition

Improving memory ability is called metamemory. Flavell states that metacognition is thinking about thinking, or knowledge of knowledge. That is to say that students' knowledge of their own cognitive processes and functions. According to Flavel, as quoted by Sastrawati et al., Metacognition refers to abilities in high-level thinking that involve active control in the cognitive process of learning (Sastrawati, Mohammad, 2011). Metacognition refers to abilities in high-level thinking that involve active control in the cognitive process of learning. A natural metacognition involves several activities, namely: 1) planning on how the learning task approach is given, (2) monitoring, understanding, and (3) evaluating the progress of the task completion.

Metacognition according to Suherman as quoted by Nur'aeni is a word or term that has something to do with what someone knows in the learning process, how to control and adjust
his behavior to himself, in other words metacognition is a form of ability to correct oneself (Nur'aeni, 2011).

The metacognitive process includes cognitive tactics that monitor and regulate the various processes that take place in learning, remembering and thinking. According to Brown, the metamemory includes tactics that: (1) predict memory system capacity limitations, (2) use various routines to remember, (3) recognize and show the characteristics of existing memory tasks, (4) monitor the effectiveness of routine methods that used, and (5) assessing the success of routine ways of memory so that they can be ended properly (Gagne, 1985).

According to Martlin explained metacognition as knowledge and awareness of cognitive processes, more specifically metacognition is a process of arousing interest to reflect on one's cognitive processes (Martlin, 2002). This is similar to the opinion of Schraw and Dennison as cited by Kurniawati and Leonardi that metacognition is defined as the ability to understand and control learning (Kurniawati, Rosi, 2013). Metacognition is very important because knowledge of cognitive processes can guide us in devising and choosing strategies to improve cognitive performance. Thus metacognition is awareness in the process of thinking of someone about himself. While awareness of thinking is someone's awareness of what is known and what will be done.

Metacognition has two components, namely: (1) metacognitive knowledge (metacognitive knowledge) and (2) metacognitive skills (metacognitive skills). There is a difference between metacognitive knowledge and metacognition skills. Knowledge of metacognition involves monitoring and reflecting one's current thoughts. This includes factual knowledge, such as knowledge of tasks, one's goals, self and strategic knowledge, such as how and when to use certain procedures to solve problems. Metacognition skills occur when students consciously adapt and manage their thinking strategies during thinking about problem solving and goals.

Marzano argues that metacognition is a skill that can be organized into several domains, namely (1) self-regulation, which includes commitment to academic tasks, positive attitudes of students to academic assignments, and controlling attention to academic assignment needs, (2) the use of types of knowledge includes: declarative, procedural, conditional knowledge and (3) controlling implementation which includes skills in evaluating, planning, and monitoring process skills (Marzano, 1988). Self-regulating skills are used by students after they are aware and know that they can control their responsibilities, attitudes, and concerns for a task. Responsibility for assignments is a decision made consciously to carry out a certain task even though the assignments of students are difficult or not. However, a positive attitude towards the task is an opinion that is used by students, namely that they believe and believe they can complete the task according to the abilities and results of the hard work of the students themselves.

Flavell states that metacognitive abilities play an important role in various types of cognitive activity, including communicating information orally, oral persuasion, oral comprehension, reading comprehension, writing, language skills, perception, attention, memory, problem solving, social cognition, and various types of self teaching and self control (Schunk, 2012). The point is that metacognition helps students in problem solving skills and know about concepts. Students need to be aware of their strengths and weaknesses. Metacognition is the ability to look at oneself so that what he does can be controlled optimally.
With this ability a person can have high ability in problem solving. Based on the above understanding, what is meant by metacognition is awareness of one's cognitive aspects of the process of thinking themselves and how to control their knowledge in doing tasks, by paying attention to the ability to regulate themselves, the use of types of knowledge, and the ability to control implementation in completing tasks.

3 Methodology/Materials
This study used a quasi-experimental method. Experimental research tests an idea (practice or procedure) to determine its effect on results (Creswell, 2012). The design used is a design treatment by level 2x2. The research variable consisted of one dependent variable namely mathematics learning outcomes and two independent variables namely learning strategies as treatment and metacognition variables as moderator variables. The covariate variable in this study is early mathematical knowledge. Learning strategy variables consist of inquiry learning strategies and expository learning strategies. Metacognition variables consist of high and low metacognition. Determination of high and low groups in this study used a division of 27% in high group scores and 27% in low group scores (Urbina, 2014). The research constellation is shown in Table 1 below.

Table 1. Design Treatment by Level 2 x 2

<table>
<thead>
<tr>
<th>Metacognition</th>
<th>Learning Strategies (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Learning Inkuiri (A₁)</td>
</tr>
<tr>
<td>High (B₁)</td>
<td>A₁B₁</td>
</tr>
<tr>
<td>Low (B₂)</td>
<td>A₁B₂</td>
</tr>
</tbody>
</table>

Information:
- A = Learning strategy
- A₁ = Groups of students who use the strategy inquiry learning
- A₂ = Groups of students who use the strategy expository learning
- B = Metacognition
- B₁ = Groups of students who have high metacognition
- B₂ = Groups of students who have low metacognition
- A₁B₁ = Groups of students who use the strategy inquiry learning and having high metacognition
- A₂B₁ = Groups of students using the strategy expository learning and having high metacognition
- A₁B₂ = Groups of students using the strategy inquiry learning and having low metacognition
- A₂B₂ = Groups of students using the strategy expository learning and having metacognition low
4 Results and Findings
Testing for the normality of sample data is done using the test Lilliefors. The testing criteria are accepting zero hypothesis (H₀), if L_count ≤ L_table, and vice versa if L_count > L_table, then the null hypothesis (H₀) is rejected at α = 0.05.

Table 2. Summary of Calculation Results of Normality Test

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>L_count</th>
<th>L_table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>16</td>
<td>0.090</td>
<td>0.222</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>A₂</td>
<td>16</td>
<td>0.126</td>
<td>0.222</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>B₁</td>
<td>16</td>
<td>0.097</td>
<td>0.222</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>B₂</td>
<td>16</td>
<td>0.097</td>
<td>0.222</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>A₁B₁</td>
<td>8</td>
<td>0.135</td>
<td>0.313</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>A₁B₂</td>
<td>8</td>
<td>0.198</td>
<td>0.313</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>A₂B₁</td>
<td>8</td>
<td>0.129</td>
<td>0.313</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>A₂B₂</td>
<td>8</td>
<td>0.241</td>
<td>0.313</td>
<td>Normal distribution</td>
</tr>
</tbody>
</table>

The data in Table 2 shows that all Mathematics learning outcomes tested using the test Lilliefors give a L_calculated value smaller than the L_value_table at α = 0.05 with L_table = 0.222 for n = 16 and L_table = 0.313 for n = 8. Based on this, it can be concluded that all Mathematics learning outcomes in this study come from populations that are normally distributed.

Testing for homogeneity of variance is done through examining the variance of learning outcomes scores. The testing criteria is accepting the null hypothesis (H₀), if c²_count ≤ c²_table, and vice versa if c²_count > c²_table, then the null hypothesis (H₀) is rejected at α = 0.05.

Table 3. Summary of Calculation Results of Homogeneity Test

<table>
<thead>
<tr>
<th>Variance Combined</th>
<th>B</th>
<th>dk</th>
<th>Price</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c²_count</td>
<td></td>
<td>c²_table (α = 0.05)</td>
<td></td>
</tr>
<tr>
<td>12,4776</td>
<td>30,691</td>
<td>3</td>
<td>3,598</td>
<td>7.82</td>
</tr>
</tbody>
</table>
Based on the results in Table 3 above, shows that the value of c^2_{count} is smaller than the value $c^2_{\text{tables}} (\alpha = 0.05; 3)$ which means that H_0 is received. The conclusion is that the variance of the four data groups (A_1B_1, A_1B_2, A_2B_1 and A_2B_2) is the same or homogeneous. Testing the hypothesis in this study relates to the main effect of the independent variables, namely inquiry learning strategies and expository learning strategies. In addition, testing of hypothesis testing is also related to the interaction (interaction effect), namely whether there is interaction between learning strategy mathematics metacognition on learning outcomes by controlling the initial knowledge. The analysis technique used in testing the research hypothesis is ANCOVA 2 road test. The results of calculations with ANCOVA are presented in Table 4.

Table 4. Summary of Hypothesis Tests with ANCOVA

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>JKy Res</th>
<th>Db</th>
<th>RJK yres</th>
<th>F_0</th>
<th>$F_{\text{table}} (\alpha = 0.05)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between A</td>
<td>90,877</td>
<td>1</td>
<td>90,877</td>
<td>7.411</td>
<td>4.21</td>
</tr>
<tr>
<td>Inter B</td>
<td>7.864</td>
<td>1</td>
<td>7.864</td>
<td>0.641</td>
<td>4.21</td>
</tr>
<tr>
<td>Interaction A x B</td>
<td>193,186</td>
<td>1</td>
<td>193,186</td>
<td>15.754</td>
<td>4.21</td>
</tr>
<tr>
<td>Peng. Early</td>
<td>18.29118.291</td>
<td>1.492</td>
<td>1</td>
<td>(X)</td>
<td>4.21</td>
</tr>
<tr>
<td>In</td>
<td>331.084</td>
<td>27</td>
<td></td>
<td>12.262</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>623,011</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results of the calculation of covariate analysis (Table 4) on the source of variance A x B significantly have interactions between learning strategies and metacognition as evidenced by $F_{\text{count}} = 15.754 > F_{\text{table}} = 4.21$, then further testing with Tukey Test (Glass, 1996), and the results of the calculations are presented in Table 5.

Table 5. Summary of Advanced Tests with Tukey Test

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Hypothesis</th>
<th>$Q_{\text{calculate}}$</th>
<th>Q_{table}</th>
<th>Decision Decree</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 if $Q_h > Q_t$</td>
<td>$H_0 : m_{11} \leq m_{21}$</td>
<td>7.316</td>
<td>4.41</td>
<td>H_0 rejected</td>
</tr>
<tr>
<td>$H_1 : m_{11} > m_{21}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept H_0 if $Q_h < Q_t$</td>
<td>$H_0 : m_{12} \geq m_{22}$</td>
<td>0.739</td>
<td>4.41</td>
<td>H_0 accepted</td>
</tr>
<tr>
<td>$H_1 : m_{12} < m_{22}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Discussion
The results of these calculations indicate that inquiry learning strategies and expository learning strategies can improve mathematics learning outcomes and have significant differences in learning outcomes. The inquiry learning strategy is superior to the expository learning strategy. This is indicated by the results of the average grade of inquiry learning strategies greater than the results of the class average expository learning strategies. This is in line with the research conducted by Tuti Hardianti and Heru Kuswanto regarding: "Difference among Levels of Inquiry: Process Skills Improvement at Senior High Schools in Indonesia". The results of the study show that in improving students' process skills, teachers can apply inquiry learning at a level appropriate to their scientific experience and competence, which can be achieved at a higher level (Hardianti & Kuswanto, 2017).

This is in line with the research conducted by Ozsoyn and Ataman regarding: "The Effect of Metacognitive Strategy Training on Mathematical Problem Solving Achievement". The results of the study indicate that learning metacognitive strategies allows students to achieve high level cognitive processes by them in finding the right problem solving process and use it in various conditions (Ozsoyn & Ataman, 2009). Research on metacognition and motivation skills studied by Widya Sarah et. al with the title "The Contribution of Metacognitive Skills and Motivation on Retention of Senior High Schools in Malang, Indonesia". The conclusion of this study is that there is a correlation between metacognition skills and motivation with retention in participants was educated by a school in Malang. Metacognition and motivation skills have been shown to have a correlation with student retention, so it is expected that educators not only focus on learning goals in cognitive aspects, but also focus more on empowering process skills, creativity, interests, social attitudes, and other factors. If this is well empowered, the retention of students will also increase (Widya Sarah et. al, 2018). The inquiry learning strategy is superior because it emphasizes more on group learning where students must be responsible for their own success or group, encourage students to help each other in understanding the material taught because the success of each student is also determined by other students in the same group.

6 Conclusion
Based on the findings and discussion of the results of the study, it can be concluded, (1) Mathematics learning outcomes of students who are taught with inquiry learning strategies are higher than expository learning strategies, after controlling the initial knowledge of mathematics; (2) There is an influence of the interaction between learning strategies and metacognition on the learning outcomes of mathematics after controlling the initial knowledge of mathematics; (3) Mathematics learning outcomes learned by inquiry learning strategies in students who have high metacognition are higher than expository learning strategies after controlling the initial knowledge of mathematics; (4) Mathematics learning outcomes taught by inquiry learning strategies in students who have low metacognition are lower than expository learning strategies after controlling the initial knowledge of mathematics.

Acknowledgements:
Thank you to the Bekasi State Vocational High School 7, which has become a place of research for data collection.
REFERENCES

Kurniawati, Rosi, T. L. (2013). The Relationship Between Metacognition and Academic Achievement in Students of the Faculty of Psychology Airlangga University who are Active in Organizing in Faculty Level Student Organizations. *Education and Development Psychology Journal, 2*, 3.

Dear ARUM SETYOWATI,

We are pleased to inform you that your Paper The Effect of Learning and Metacognition on Mathematics Learning Outcomes in Vocational School by Controlling Initial Mathematical Knowledge has been accepted for normal presentation in 3rd Asia International Multidisciplinary Conference 2019 (AIMC2019) after peer review by the editorial board (AIMC2019). Please note that the conference will be held on 1-2 May 2019 at N 24, Universiti Teknologi Malaysia, Johor Bahru, Malaysia. You are hereby requested to upload payment proof at http://portal.connectingasia.org/ along with full paper within 14 days. Participants who can’t ensure their presences at conference venue are allowed to present virtually through video conferencing using Skype. This paper will be published in a SCOPUS Indexed Journal International Journal of Recent Technology & Engineering (IJRTE) as mentioned on the conference website (see link for detail).

For future correspondence, use this AIMC-2019-STEM-520 as reference. If you have any queries, feel free to contact any of the undersigned accordingly.

Muhammad Imran Qureshi
Director Operation/Publications
Connecting ASIA Sdn Bhd.
Sprinter center, Innovation and Commercialization Center, UTM, Johor Bahru, Malaysia
e-mail: asia@utm.my,
website: http://www.utm.my/asia/
website: http://www.connectingasia.org
Whatsapp/Contact. +60 11 26277412