REPUHLIK INDONESIA
KEMENTERIAN HUKUM DAN HAK ASASI MANUSIA

SURAT PENCATATAN
CIPTAAN

Dalam rangka pelindungan ciptaan di bidang ilmu pengetahuan, seni dan sastra berdasarkan Undang-Undang Nomor 28 Tahun 2014 tentang Hak Cipta, dengan ini menerangkan:

Nomor dan tanggal permohonan : EC00201814629, 4 Juni 2018

Pencipta
Nama : Dr. Muzani, M.Si
Alamat : Jl.Tanjung Kav, 1291. Komplek Bukit Nusa Indah, Ciputat, Tangerang Selatan, Banten, 15414

Kewarganegaraan : Indonesia

Pemegang Hak Cipta
Nama : LPPM Universitas Negeri Jakarta
Alamat : Gd. Ki Hajar Dewantara Lt 6-7 Kampus A, Universitas Negeri Jakarta, Jalan Rawamangun Muka, Jakarta Timur, Dki Jakarta, 13220

Kewarganegaraan : Indonesia

Jenis Ciptaan : Buku Panduan/Petunjuk
Judul Ciptaan : Buku Panduan Identifikasi Batuan

Tanggal dan tempat diumumkan untuk pertama kali di wilayah Indonesia atau di luar wilayah Indonesia : 24 Januari 2018, di Jakarta

Jangka waktu pelindungan : Berlaku selama 50 (lima puluh) tahun sejak Ciptaan tersebut pertama kali dilakukan Pengumuman.
Nomor pencatatan : 000109892

adalah benar berdasarkan keterangan yang diberikan oleh Pemohon.
Surat Pencatatan Hak Cipta atau produk Hak terkait ini sesuai dengan Pasal 72 Undang-Undang Nomor 28 Tahun 2014 tentang Hak Cipta.

a.n. MENTERI HUKUM DAN HAK ASASI MANUSIA
DIREKTUR JENDERAL KEKAYAAN INTELEKTUAL

Dr. Freddy Harris, S.H., LL.M., ACCS.
NIP. 196111181994031001
BUKU PANDUAN
IDENTIFIKASI BATUAN

PROGRAM STUDI GEOGRAFI
FAKULTAS ILMU SOSIAL
UNIVERSITAS NEGERI JAKARTA
2017
DAFTAR ISI

- KATA PENGANTAR
- DAFTAR ISI
- MAGMA DAN BATUAN
- BATUAN BEKU
- BATUAN SEDIMEN
- BATUAN METAMORF
KATA PENGANTAR

Jakarta, Desember 2017
MAGMA DAN BATUAN

Apa itu magma?
Magma adalah cairan silikat yang ada dalam bumi yang mengandung banyak unsur.

Gambar 1
Magma mengalir di permukaan

Sekitar 99% dari magma tersusun dari 10 unsur kimia, antara lain Silikon (Si), Titanium (Ti), alumunium (Al), besi (Fe), magnesium (Mg), kalsium (Ca), natrium (Na), kalium (K), hidrogen (H) dan oksigen (O). Selain itu juga magma banyak mengandung gas. itu yang menyebabkan magma naik ke permukaan bumi.

Apa itu batuan?
Jika itu membeku maka unsure-unsur yang ada dalam magma tersebut bergabung satu sama lain membentuk mineral. Contohnya unsur Si dan O maka akan membentuk SiO2 (mineral kuarsa). Bahan padat bentukan alam yang umumnya tersusun oleh kumpulan atau kombinasi dari satu macam mineral atau lebih ini dinamakan batuan.
Berdasarkan terjadinya batuan dibagi tiga:

1. Batuan beku: terbentuk dari pembekuan magma
2. Batuan sedimen: terbentuk dari hasil pelapukan dan endapan batuan yang sudah ada
3. Batuan metamorf: terbentuk akibat pengaruh temperatur dan tekanan

Gambar 3. Kelompok Batuan
Gambar 4. Siklus Batuan

Cara menentukan batuan beku, sedimen dan metamorf adalah melalui pengetahuan tentang ciri-ciri dari batuan. Adapun ciri-ciri batuan masing-masing kelompok adalah:

Tabel 1. Ciri batuan beku, sedimen dan metamorf

<table>
<thead>
<tr>
<th>Batuan Beku</th>
<th>Batuan Sedimen</th>
<th>Batuan Metamorf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisiknya keras</td>
<td>Tersusun dari</td>
<td>Foliiasi</td>
</tr>
<tr>
<td>Bentuknya padat</td>
<td>pasir, kerikil</td>
<td>Pita-pita</td>
</tr>
<tr>
<td>Homogen dan kompak</td>
<td>Mengandung fosil,</td>
<td>warna</td>
</tr>
<tr>
<td>Tidak ada lapisan</td>
<td>kerang</td>
<td>Reaksi</td>
</tr>
<tr>
<td>Tidak ada fosil,</td>
<td>Reaksi dengan HCL</td>
<td>dengan HCL</td>
</tr>
</tbody>
</table>

BATUAN BEKU
Jika magma membeku di dalam maka terbentuk batuan beku dalam dan jika membeku diperjalanan maka terbentuk batuan gang dan jika membeku di permukaan maka terbentuk batuan beku luar. Perbedaan tempat pembekuan ini mengakibatkan bentuk batuannya berbeda dalam hal tekstur.

Batuan Beku Intrusif/Dalam (Plutonik)
Terbentuk dari magma yang membeku secara lambat, jauh di bawah permukaan bumi (15-50 km)
Contoh: granit, diorit, granodiorit, syenit, gabro, peridotit, dunit.
Tekstur: kasar

Batuan Beku Gang/Korok (Hipabisal/Porfirik)
terbentuk dari magma yang membeku di gang/celah kerak bumi dalam perjalanan / sebelum sampai ke permukaan bumi
Contoh : granit porfir, diorit porfir, gabro porfir, diabas, pegmatit, aplit

Batuan Beku Ekstrusif/Luar/Leleran (Volkanik)
Terbentuk dari lava yang membeku secara cepat di dekat / di atas permukaan bumi
Contoh : riolit, basalt, andesit, dasit, trakt, obsidian, batuapung
Tekstur: halus

<table>
<thead>
<tr>
<th>Batuan Berdasarkan Tempat Terjadi</th>
<th>Tekstur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batuan Beku Dalam</td>
<td>Kasar</td>
</tr>
<tr>
<td>Batuan Gang</td>
<td>Kasar dan Halus</td>
</tr>
<tr>
<td>Batuan Beku Luar</td>
<td>Halus/Kaca</td>
</tr>
</tbody>
</table>

KLASIFIKASI BATUAN BEKU BERDASARKAN KOMPOSISI KIMIA
Magma ada 3 jenis yaitu magma asam magma intermediet dan magma basa. Masing-masing magma tersebut berbeda warna karena berbeda kandungan mineralnya. Warna batuan ditentukan oleh mineral. Magma yang sedikit mengandung Silika disebut magma basa (warna hitam), sedangkan magma yang banyak mengandung Si (Silika) disebut magma asam dan berwarna terang.

Batuhan beku asam (warna terang)
kaya kandungan Silika (>65%)
Contoh : granit, riolit, dasit, obsidian, batuapung

Batuhan beku menengah/intermediet
kandungan Silika (53-65%)
Contoh : andesit, diorit, syenit, dasit, granodiorit

Batuhan beku basa
masin kandungan Silika (45-52%)
Contoh : gabro, basalt, dolerit, norit

Batuhan beku ultra basa (warna sangat gelap)
sangat masin kandungan Silika (<45%)
Contoh : peridotit, dunit, pikrit, komatit

Tabel 3. Contoh Batuan Asam, Intermediet dan Basa

<table>
<thead>
<tr>
<th>Batuan Beku</th>
<th>Kandungan Silika</th>
<th>Contoh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asam (warna terang)</td>
<td>(>65%)</td>
<td>granit, riolit, dasit,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>obsidian,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batuapung</td>
</tr>
<tr>
<td>Intermediet</td>
<td>(53-65%)</td>
<td>andesit, diorit, syenit,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dasit, granodiorit</td>
</tr>
<tr>
<td>Basa</td>
<td>(45-52%)</td>
<td>gabro, basalt, dolerit,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>norit</td>
</tr>
<tr>
<td>Ultra Basa (warna gelap)</td>
<td>(<45%)</td>
<td>peridotit, dunit, pikrit,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>komatit</td>
</tr>
</tbody>
</table>

MINERAL BATUAN BEKU
Berdasarkan tempat pembekuannya magma dapat membeku di dalam atau di perjalanan menuju permukaan atau juga bisa sampai di permukaan bumi. Perbedaan tempat terjadinya batuan beku berpengaruh terhadap teksturnya. Tekstur adalah ukuran kristal yang terdapat pada batuan tersebut. Karakteristik utama yang sangat berguna untuk mengidentifikasi batuan adalah:

1. **Komposisi mineral**: Jenis mineral yang terkandung dalam batuan
2. **Tekstur**: Ukuran, bentuk dan hubungan butiran mineral dalam batuan
3. **Struktur**: Kenampakan khas pada batuan

<table>
<thead>
<tr>
<th>Tekstur Batuan</th>
<th>Struktur Batuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukuran</td>
<td>Kristalin</td>
</tr>
<tr>
<td>Bentuk</td>
<td></td>
</tr>
<tr>
<td>Kasar</td>
<td></td>
</tr>
<tr>
<td>Menyudut</td>
<td></td>
</tr>
<tr>
<td>Halus</td>
<td>Membundar</td>
</tr>
<tr>
<td></td>
<td>Fragmental</td>
</tr>
<tr>
<td>Kaca</td>
<td></td>
</tr>
</tbody>
</table>

Gambar 5

Tekstur dan Struktur Batuan

KLASIFIKASI BATUAN BEKU BERDASARKAN TEMPAT TERJADINYA
Ada 8 mineral utama pembentuk batuan yaitu: Plagioklas, Kuarsa, Feldspar, Muscovit, Biotit, Amphibol, Piroksen dan Olivin.
Gambar 6. Mineral Pembentuk Batuan Beku

Tabel 4. Nama dan Warna Mineral dalam batuan beku

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Mineral</th>
<th>Warna</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kuarsa</td>
<td>Terang</td>
</tr>
<tr>
<td>2</td>
<td>Plagioklas</td>
<td>Terang</td>
</tr>
<tr>
<td>3</td>
<td>Feldspar</td>
<td>Terang</td>
</tr>
<tr>
<td>4</td>
<td>Muskovit</td>
<td>Terang</td>
</tr>
<tr>
<td>5</td>
<td>Biotit</td>
<td>Gelap</td>
</tr>
<tr>
<td>6</td>
<td>Amphibol</td>
<td>Gelap</td>
</tr>
<tr>
<td>7</td>
<td>Pirosen</td>
<td>Gelap</td>
</tr>
<tr>
<td>8</td>
<td>Olivin</td>
<td>Gelap</td>
</tr>
</tbody>
</table>
Berdasarkan kristalinitasnya

Holokristalin - seluruhnya massa kristal
Hipokristalin - campuran kristal & gelas
Holohialin - seluruhnya massa gelas

Gambar 7. Tekstur Holokristalin dan Holohialin
Berdasarkan granularitasnya

Faneritik - berbutir kasar
Afanitik - berbutir halus
Porfiritik - berbutir kasar & halus

Gambar 8. Tekstur Faneritik, Afanitik, Porfiritik
STRUKTUR BATUAN BEKU

Masif (Massive)
Vesikuler (Vesicular)
Amigdaloidal (Amygdaloidal)
Terak (Scoria)
Helatan (Xenolith)

Vesikuler

Amigdaloidal
Gambar 9. Struktur Batuan Beku
STRUKTUR BATUAN BEKU

Struktur Berlembar

Struktur Aliran
Gambar 10.

Struktur Batuan Beku
Gambar 11.
Contoh Batuan Beku
<table>
<thead>
<tr>
<th>Nama Batuan</th>
<th>Tekstur</th>
<th>Warna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusif</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granit</td>
<td>Kasar</td>
<td>Terang</td>
</tr>
<tr>
<td>Gabro</td>
<td>Kasar</td>
<td>Gelap</td>
</tr>
<tr>
<td>Ekstrusif</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riolit</td>
<td>Halus</td>
<td>Terang</td>
</tr>
<tr>
<td>Basal</td>
<td>Halus</td>
<td>Gelap</td>
</tr>
<tr>
<td>Obsidian</td>
<td>Kaca</td>
<td>Gelap</td>
</tr>
<tr>
<td>Batuapung</td>
<td>Kaca</td>
<td>Terang</td>
</tr>
</tbody>
</table>
Batuan yang terbentuk dari proses pengendapan bahan lepas berupa fragmen batuan/mineral hasil perombakan/pelapukan batuan lain yang terangkut dari tempat asalnya oleh air, es atau angin, yang kemudian mengalami litifikasi/pembatuan.

Gambar 12
Batuan Sedimen

Klasifikasi Batuan Sedimen Berdasarkan Genesanya

Batuan Sedimen Klastik/Mekanik
Terbentuk dari pengendapan bahan rombakan batuan asal
Contoh : breksi, konglomerat, batupasir, batulanau, batulempung

Batuan Piroklastik
Terbentuk dari pengendapan bahan letusan gunungapi
Contoh : breksi vulkanik, aglomerat, ignimbrit, tufa

Batuan Sedimen Non-Klastik /Sedimen Kimiawi
Terbentuk dari proses kimiawi (evaporasi / presipitasi)
Contoh : batugaram, batugypsum, anhidrit, travertin, chert

Batuan Sedimen Organik/Biogenik
Terbentuk dari pengendapan bahan organis (sisa-sisa hewan & tumbuhan)
Contoh : batugamping, batubara, dolomit, diatomit, radiolarit
Tekstur Klastik

Besar butir

<table>
<thead>
<tr>
<th>UKURAN BUTIRAN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KERAKAL</td>
<td>4–64 mm</td>
</tr>
<tr>
<td>GRANUL</td>
<td>2–4 mm</td>
</tr>
<tr>
<td>PASIR KASAR</td>
<td>0.5–2 mm</td>
</tr>
<tr>
<td>PASIR SEDANG</td>
<td>0.25–0.5 mm</td>
</tr>
<tr>
<td>PASIR HALUS</td>
<td>0.06–0.25 mm</td>
</tr>
<tr>
<td>LANAU</td>
<td>0.004–0.06 mm</td>
</tr>
<tr>
<td>LEMPUNG</td>
<td>< 0.004 mm</td>
</tr>
</tbody>
</table>

Gambar 13.
Tekstur Batuan Sedimen
Tekstur Non-Klastik

Amorf (Amorphous)
Olit (Oolitic)
Pisolit (Pisolitic)

Gambar 14.
Tekstur Sedimen Non Klastik
Struktur Klastik/Fisika

Perlapisan bersusun
(Graded bedding)
Perlapisan silang siur
(Cross bedding)

Gambar 15. Sрукturn sedimen Klastik
CONTOH BATUAN SEDIMEN

KONGLOMERAT

BREKSI

BATU PASIR

GREWAK

BATU LUMPUR

BATU GAMPING

RUJANG
Gambar 16. Contoh Batuan Sedimen

Tabel 6. Nama Batuan dan Komposisi

<table>
<thead>
<tr>
<th>Klasifikasi</th>
<th>Nama Batuan</th>
<th>Komposisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klastik</td>
<td>Konglomerat</td>
<td>Kerikil, kerakal, berangkal</td>
</tr>
<tr>
<td></td>
<td>Batupasir</td>
<td>Pasir</td>
</tr>
<tr>
<td></td>
<td>Batulanau</td>
<td>Lanau</td>
</tr>
<tr>
<td></td>
<td>Batulempung</td>
<td>Lempung</td>
</tr>
<tr>
<td>Kimiawi</td>
<td>Batugaram</td>
<td>Halit</td>
</tr>
<tr>
<td></td>
<td>Batugipsium</td>
<td>Gipsum</td>
</tr>
<tr>
<td>Organik</td>
<td>Batugamping organik</td>
<td>Sisa organisma</td>
</tr>
<tr>
<td></td>
<td>Batubara</td>
<td>Sisa tumbuhan</td>
</tr>
</tbody>
</table>
BATUAN METAMORF

Batuan yang terbentuk dari proses perubahan batuan asal, baik perubahan bentuk/struktur maupun susunan mineralnya akibat pengaruh panas dan/atau tekanan yang sangat tinggi atau reaksi kimia

Gambar 17. Marmer

KLASIFIKASI BATUAN METAMORF BERDASARKAN FAKTOR ENGAHUNNYA

Batuan Metamorf Kontak/Terma
- terbentuk akibat temperatur yang sangat tinggi
 - akibat intrusi/kontak langsung dengan magma
- Contoh: batusabak, batutanduk (hornfels), marmer

Batuan Metamorf Dinamik/Kataklastik
- terbentuk akibat tekanan yang sangat tinggi
 - akibat gesekan sepanjang zona sesar
- Contoh: milonit
- Batuan Metamorf Terkubur (Burial Met.Rock)
 - terbentuk akibat terpendam di dasar cekungan/geosinklin dan tertekan sedimen yang sangat tebal
- Contoh: batusabak

Batuan Metamorf Regional/Dinamo-Terma
- terbentuk akibat tekanan dan temperatur sangat tinggi
 - akibat tektonik kuat pada jalur gunungapi
- Contoh: filit, sekis, genes, kuarsit, eklogit, marmer

27
KLASIFIKASI BATUAN METAMORF
BERDASARKAN TEKSTURNYA

Batuan Metamorf Foliasi
Contoh : batusabak, filit, sekis, genes, milonit

Batuan Metamorf Non-Foliasi
Contoh : kuarsit, marmer, hornfels, amphibolit, granulit, eklogit, saponit

STRUKTUR DAN TEKSTUR BATUAN METAMORF

Struktur Foliasi/Paralel

Kenampakan berlapis/berlembar akibat orientasi penjajaran mineral penyusun batuannya (berbeda dengan perlapisan pada batuan sedimen)
Slaty (menyabak), Phyllitic (memfilit), Schistose (menyekis), Gneissic (menggenes)
Struktur Non-Foliasi
Kenampakan tidak berlapis/berlembar
Contoh: kuarsit, marmer

Gambar 18. Struktur dan Tekstur Batuan Metamorf

Contoh Batuan Metamorf

Gambar 19. Contoh Batuan Metamorf
Tabel 7. Tekstur dan batuan Asal dari Batuan Metamorf

<table>
<thead>
<tr>
<th>Nama Batuan</th>
<th>Tekstur</th>
<th>Batuan Asal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foliasi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batusabak</td>
<td>Sangat Halus</td>
<td>Serpih</td>
</tr>
<tr>
<td>Filit</td>
<td>Halus</td>
<td>Serpih</td>
</tr>
<tr>
<td>Sekis</td>
<td>Sedang-Kasar</td>
<td>Batusabak, Basal</td>
</tr>
<tr>
<td>Genes</td>
<td>Kasar</td>
<td>Granit</td>
</tr>
<tr>
<td>Non Foliasi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuarsit</td>
<td>Sedang</td>
<td>Batupasir</td>
</tr>
<tr>
<td>Marmer</td>
<td>Kasar</td>
<td>Batugamping</td>
</tr>
</tbody>
</table>

DISKRIPSI BATUAN SAMPEL

(1) Batu Granit (Batuan Beku)

Batu ini memiliki Kristal-kristal yang kasar dan menunjukkan warna terang.
(2) Batu Basal (Batuan Beku)

Batu ini memiliki Kristal-kristal yang halus dan menunjukkan warna gelap.

(3) Batu Marmer (Batuan Metamorf)

Batu ini tidak menunjukkan kristal yang kasar dan menunjukkan warna terang. Bereaksi dengan HCL
(4) Batu Belerang (Batuan Beku)

Batuan ini memiliki Kristal-kristal yang berwarna kuning.

(5) Batu Sedimen Biogeneik (Batuan Sedimen)

Batuan sedimen biogenic adalah hasil aktivitas organisme. Berbagai macam organisme menyusun batuan ini antara lain, koral, foraminifera dll. Kelompok ini disebut juga sedimen karbonat (Ca CO3). Bereaksi baik dengan HCl.
(6) Batu Kapur (Batuan Sedimen)

Batu kapur dapat terjadi dengan beberapa cara, yaitu secara organik, secara mekanik. Sebagian besar batu kapur yang terdapat di alam terjadi secara organik.

(7) Batu Metamorf Gneis (Batuan Metamorf)

Merupakan batuan yang terbentuk dari hasil metamorfosisme batuan beku dalam temperatur dan tekanan yang tinggi
(8) Batu Bara (Batuan Sedimen)

Batu ini berwarna hitam, ringan dan termasuk kelompok batuan organik

(9) Batu Apung (Batuan Beku)

Batu apung terbentuk ketika lava mendingin dengan cepat sehingga banyak gas yang terperangkap di dalamnya sehingga terbentuklah batuan dengan banyak sekali lubang di dalamnya. Jika batu yang terbentuk berwarna terang maka batu tersebut dinamai batu apung;
LEMBAR KERJA

Nama:

1. Identifikasi Batuan Berdasarkan Terjadinya

<table>
<thead>
<tr>
<th>No</th>
<th>Ciri-ciri</th>
<th>Kelompok Batuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Identifikasi Berdasarkan Kandungan Mineral

<table>
<thead>
<tr>
<th>No</th>
<th>Kandungan Mineral</th>
<th>Kelompok Batuan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asam</td>
<td>Intermediet</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>