REALISTIC MATHEMATICS EDUCATION (RME) AS AN INSTRUCTIONAL

Turnitin Originality Report

Processed on: 13-Nov-2019 12:36 PM WIB
ID: 1212812878
Word Count: 3919
Submitted: 1

RME By Yurni Yurnwi

<table>
<thead>
<tr>
<th>Similarity Index</th>
<th>Similarity by Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>4%</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>4%</td>
</tr>
</tbody>
</table>

Internet Sources: N/A
Publications: N/A
Student Papers: 4%

1% match (student papers from 19-Oct-2010)
Submitted to University of Stellenbosch, South Africa on 2010-10-19

1% match (student papers from 29-Jun-2012)
Submitted to University of Pretoria on 2012-06-29

<1% match (student papers from 04-Apr-2013)
Submitted to Nottingham Trent University on 2013-04-04

<1% match (student papers from 07-Nov-2018)
Submitted to University of Leicester on 2018-11-07

<1% match (student papers from 04-Dec-2015)
Submitted to Laureate Higher Education Group on 2015-12-04

<1% match (student papers from 07-May-2012)
Submitted to University of Stellenbosch, South Africa on 2012-05-07

<1% match (student papers from 26-Apr-2017)
Submitted to University of Dundee on 2017-04-26

<1% match (student papers from 11-Mar-2019)
Submitted to Chester College of Higher Education on 2019-03-11

<1% match (student papers from 28-Apr-2012)
Submitted to Bloomsbury Colleges on 2012-04-28

<1% match (student papers from 09-Jan-2019)
Submitted to Queen Mary and Westfield College on 2019-01-09
DESIGN APPROACH FOR MAN 4 JAKARTA ELEVENTH GRADER STUDENTS MAJORING IN SOCIAL STUDIES TO BUILD RELATIONAL UNDERSTANDING OF INTEGRAL Novianti Mulyana, M.Pd.1, Dr.Yurniwati, M.Pd.2, and Dr. Pinta Deniyanti Sampoerno, M.Si3 1Universitas Negeri Jakarta, Jakarta, Indonesia noviantimulyana@yahoo.co.id 2PGSD, Jakarta, Indonesia 3UNJ, Jakarta, Indonesia Abstract. Calculus is a branch of mathematics that is studied in Senior High School. Integral is one of the subjects in Calculus, but the Instructional Design Approach of Integral Learning in MAN 4 Jakarta is not contextual yet and lack of relational understanding development. The purpose of this research is to develop a Local Instructional Theory using RME as an Instructional Design Approach to build students’ relational understanding of Integral. This research is using the Design Research Method which consists of three cyclic phases which are preparation and design, teaching experiment, and retrospective analysis. The contexts that are used in this research are the derivative of a function, wall paper, and the definition of a function. The retrospective analysis shows that the context used, mathematical process, and the activity of the students and teacher proved to be able to build students’ relational understanding, with contexts as the tools in thinking activities from “model of” to “model for”. The result of this research is proved by the ability of students to explain the fact of the process and results of his/her work. Keywords: RME, relational understanding, Integral, wall paper. INTRODUCTION The mathematics learning objectives in Indonesia correspond to the NCTM (National Council of Teachers of Mathematics): 1) problem solving, 2) reasoning, 3) communication, 4) connection, and 5) representation, that can be achieved by learning mathematics in school from elementary, junior high, to senior high school. Students of twelve graders of MAN 4 Jakarta still have difficulties in several mathematical materials, such as Integral in Calculus. The difficulties that experienced by the students correspond with the 20 years of research compiled by Kizito (2012), that the students don’t have the relational understanding about Integral, yet. Students could solve and answer procedural problems, but struggle to solve the conceptual problems, and they didn’t even try to solve it. It was probably caused by the learning process. Anthony and Walshaw (2009) stated that learning activities which lack of students engagement will cause the students struggle to be able to solve mathematical problems. The learning objectives can be achieved by building a condition of fun learning and learning understanding using context that can be the previous understanding (Heuvel-Panhuizen, 2001), which can be achieved by using the Realistic Mathematic Education (RME) approach. RME uses guided reinvention method and contextual problem (Gravemeijer, 1999). The context gives the opportunity to students to develop mathematical understanding by changing from ”model of“ to “model for“. Students can do an intertwinemment that connects the new math material with the math material which had been understood, followed by interactivity with other students and teacher. Solving a math problem with a self-chosen strategy, can be conducted with relational understanding. Relational understanding in this research is reconstructed from Skemp by Kinach (2002): 1) Content level understanding, 2) Concept level understanding, 3) Problem solving level understanding, 4) Epistemic level understanding. Relational understanding occurred when someone can use a mathematic procedure using the mathematic concepts that he/she has understood, and then can make the relation among what to be learnt with what has been understood. Learning with the Realistic Mathematics Education (RME)
The approach can give the opportunity to construct the relational understanding. The local instructional theory of Integral subject using RME approach can be built using a Hypothetical Learning Trajectory by a Design Research. According to that, the Design Research: Realistic Mathematics Education (RME), as an Instructional Design Approach for MAN 4 Jakarta Eleventh Grader Students Majoring in Social Studies to Build Relational Understanding of Integral was conducted. According to the reconstruction of understanding from Skemp by Kinach (2002) and the Minister National Education Indonesia number 22nd year 2006 about content standard for Elementary and High Education Unit, the development of relational understanding is restricted to: 1) content level understanding (can show the basic facts using algorithm), 2) concept level understanding (can analyze and synthesize patterns), 3) problem solving understanding (can use scientific method to solve problem independently), 4) epistemic level understanding (can give valid mathematics proves). The mathematics content in this research is the Integral for social studies major in MAN 4 Jakarta: 1) Indefinite Integrals; and 2) Definite Integrals. The purpose of this research with a Design Research method is to develop Realistic Mathematics Education (RME), as an Instructional Design Approach for MAN 4 Jakarta Eleventh Grader Students Majoring in Social Studies to Build Relational Understanding of Integral. The research use for students is to escalate the quality in mathematics learning process in Integral with Realistic Mathematics Education (RME) As an Instructional Design Approach for MAN 4 Jakarta Eleventh Grader Students Majoring in Social Studies to Build Relational Understanding of Integral. The strategy and learning design that developed in this research can be used as an alternative in teaching. Teachers can use the Local Instructional theory in this research, so he/she can be more focused in doing the fun learning activities effectively. THEORETICAL REVIEW Realistic Mathematics Education Realistic Mathematic Education (RME) was developed since 1971 by the mathematician Hans Freudenthal in the Netherlands. Gravemeijer and Terwell (2000) support this learning approach with their opinion that learning mathematics will be more meaningful for students if started with the investigation about man activities. Furthermore, Heuvel- Panhuizen (2001) explain that realistic is not only a situation in the real world, but also things that can be visualized by students such as stories and formulas. Using contexts help students to construct mathematics concepts, because the new mathematics concepts that have to be learnt is easy to be connected with the prior knowledge. In order to achieve understanding, activities to connect the new knowledge to the prior knowledge is important since mathematics is not to be given as a final formula that is ready to be used (Gravemeijer and Terwel, 2000). Understanding can’t be given by teacher to students. It has to be constructed independently by students (Lynn, 1999). Understanding can be constructed by directing students to reinvent mathematics ideas or concepts by mathematical process by solving realistic mathematics activities. This is supported presentation by Heuvel-Panhuizen (2001) that when working with contextual problem, students develop mathematical process and understanding. Figure 1. Reinvention in RME Gravemeijer (2000) stated that the RME principles are: a. Guided reinvention an progressive mathematization, to find the independent way to solve mathematics problems b. Didactical phenology (the use of phenomena in learning math) c. Self-development model The principle of RME is supported by five characteristics presented by Treffers (in Gravemeijer, 1994): a. Using context The context not only as an illustration, but furthermore the
contexts are really used as the tools to reinvent mathematics context. Heuvel-Panhuizen (2001) presented that context is the important thing in learning use the RME approach, since has the functions as follows: 1. Concept forming gives the opportunity to students to reinvent concept naturally using context. 2. Model forming make the context can be used by student to develop many strategies to reinvent mathematics concept. 3. Sufficiently flexible to be applied makes the context can give the opportunity to students to see the application of it in the real world. 4. Fit with the students’ informal strategies means that Students use context to explore and to explain about the solution using context as the tools to solve problem. b. Use models to Progressive Mathematization c. Using the Students’ Construction d. Interactivity e. Intertwinement According to those experts’ opinion, so the learning activity that use the RME approach has to be started with context from the real life of the concepts that had been understood by the students, and then followed by the discussion to solve the problems to get the solution of the problems, eventually student can reinvent the mathematics concepts independently. Integral Learning Ryan (2005) presented that Integral is a part of Calculus. The definition of calculus is parts of mathematics that analyze the aspects of changing in process or system that can be modeled by function, using two primary tools namely derivatives and integrals. Differentials and integrals emerge from the idea of limit; develop from the function concept in the intervals decreasing to almost zero. The relation between differential and integral, known as the fundamental theorem of calculus, founded at the end of 17th century independently by Isaac Newton and Gottfried Wilhelm Leibniz. Purcell (1996) presented that the fundamental theorem of calculus connect the gradient problem with the wide area problem. Indefinite Integral is an anti-differential. Instructional Local Theory The purpose of this design research is to develop a local instructional theory to construct relational understanding students in the realistic mathematics frameworks, which serves as a theory that is proven empirically on how a series of learning activity can be used for students majoring in social studies to build the relational understanding on Integral. According to the presentation above, so this design research is arranged in 6 stages: 1. Using the relational understanding that Integral is an anti-differential with the model of is polynomial function which the term in the polynomial function which consist of only a constant stated with two factors the characteristic and the variable powered by zero, to explain why the indefinite integral has to be added by a constant noted by C. 2. The second stage is using the relational understanding with the model of is the function that pass through a point to find the value of the C in the anti-differential function. 3. The third stage is a guided reinvention on a concept of wide area as the limit of additional the wide areas of rectangular which the wide of each rectangular very close to zero, so the numbers of the rectangular is near to infinity in the interval that use the model of hang wall paper. 4. The fourth stage consists of activities to do the algebra manipulation using integral to find the wide area between graph and x axis in interval. 5. The fifth stage is using the relational understanding with the model of is the definition of a function. The students understand the definite integral using substitution. 6. The sixth stage is using the relation understanding with the model of is the differential of the function of multiplication of two function, as the tools to understand the partial integration. Hypothetical Learning Trajectory Hypothetical Learning Trajectory is made to clarify the Local Instructional Theory into mathematics learning activities in each meeting. There are nine
meetings of learning, and one meeting of test in this design research. RESEARCH METHODOLOGY Bakker (2004) stated that design research has three phases: (1) preparation and design (thought experiment); (2) teaching experiment (instruction experiment); and (3) retrospective analysis (produce conjectured local instructional theory), that form a cyclic process in each phase also in overall of the design research.

Figure 2. The reflective Relation between Theory and Experiment This research is conducted in the second semester of year 2015/2016 at MAN 4 Jakarta. According to the criteria of choosing the research subject such as the prior ability, the activity of students in the teaching experiment phase, so it was chosen six research subjects. Then it was discussed with the observer whether those six students are suitable to be chosen. The data collected in this research is the video recordings, photos, students’ work, and field notes (log). The methods to collect data are: pencil and paper methods, interview methods, and ostensive methods with video tape. The research instruments are: (1) video tape, (2) work sheets, (3) audio recording, (4) fields notes, and (5) Hypothetical Learning Trajectory Validity and reliability in this design research is needed to get the research result that can be proven right and valid. There are two kinds of the data: validity ecology validity and internal validity. And there are two kinds of data reliability: external reliability and internal reliability. Interpretation framework is the part that explains the method used to analyze data of research result that is the series of learning process in the class community that related with the development of mathematical process. Gravemeijer (2006) stated that there are two criteria in interpretation framework, that is (1) the framework to interpret the development of students mathematical thinking process as the overall in a class, (2) the framework to interpret the development of students’ mathematical thinking as an individual.

RESEARCH RESULT AND DATA ANALYSIS The following will be explained about the process of learning experiment in class and the data from it will be analyzed. The data analysis using the Emergent Perspective Interpretation Framework and will be explained for each meeting. First Meeting: Integral as anti-differential Figure 3. Students’ Work about the Sketch of the Quadratic and the Third Power Function By using the idea that in discussion activities, students reinvented that since the differential of any constant was zero, the students found that the anti-differential of zero could be any constant number. By working backward the student find the pattern that anti differential of any polynomial function has to be added by a constant that noted by C. Second Meeting: Determine the Integral of function that passes through the point The students used the definition of gradient as the context in this meeting, and then use the definition of function that passes through a point. Third Meeting: The exercise on Integral as anti-differential and determine the function of Integration. The students asked to solve the open ended question about indefinite integration. Then by using the relational understanding in the discussion, the students can find which function that can be the answer, either which function that can't be the answer. The students also can apply that in the graph, to explain about the possible answer. The Fourth meeting: Understanding Integral as a wide area Having the students had the prior knowledge about the wide area of regular shapes, learning activity continued with the challenge to cover a wide area of a wall that has irregular shape with wall paper. The video of how to hang wall paper was presented to the class. Figure 4. How to Hang Wall Paper (Courtesy from YouTube) Figure 5. Animation to Hang Wall Paper in the curved area The students then filling the worksheets on determining the wall paper needed to cover the area of
the wall that the shape is a quarter of the circle area if the wide of the
to cover which total area needs was
the nearest to the wall area that has to be covered. After finding the
result the students get the further question what will it be with the total
area of the wall paper, if the wide of the wall paper decreasing? If the
wide of wall paper is zero, what is the total area of the wall paper? So,
what is the minimum wide of wall paper to get the nearest total area to
the area of the wall that has to be covered? Amazingly, the students
work on these tasks entirely, although they did not use to work on essay
task. By actually doing this task, the student can analyze and come up
with an idea that the technique on how to hang wall paper that the
teacher offer will not be satisfied by the customer since there will be
area which not be covered. Figure 6. Student’s work on Hang Wall Paper
to Cover the Quarter of Circle Wall The following activity is the teacher
introducing the formal notation on what the students has been working
on, as follows: Formula 4.1. Definite Integral By actually working to
calculate the total wide area of wall paper with different wide, the
students easily saw the idea of that affect to the increasing of the wall
paper numbers that directed to the idea. Students can easily see that
using integral to determine the wide area is only the other way to find
the wide area that is more effective to be used on irregular shapes. The
fifth meeting: Determine the wide area between above x axis and a
graph and the wide area between under x axis and a graph Using the
wall paper, makes the students easily see the wide area has to be a
positive value, since there is the wall paper needed to cover it. The
Sixth Meeting: The exercise on Definite Integral Find the wide area of a)
and b) using integral. The problems were not the regular problems but the problems
that needed the understanding and can be solved without any algebra
formula. The seventh meeting: Integral with Substitution By using the
definition of a function, students were easily solving the problem in this
part. The eight meeting: Partial Integration Since the students were
already getting used to use their relational understanding to connect
their prior knowledge with the new knowledge that has to be learnt.
The students were working backward to find the result of Partial
Integration. The ninth meeting: The exercise of Integral Procedural
understanding The procedural understanding still needed to be
mastered, since it is a part of relational understanding. The interesting
thing that happened was the students could solve problems more
independently. The tenth meeting: Test the relational understanding of
Integral The test consists of four problems that are about the indefinite
integral, analyzing the result of definite integral of a function, analyzing
the wall paper needed to cover the wall, and analyzing the wide area
between two curves. Data Analyze Research Subject (RS) Analyze RS1
has a very good prior knowledge about differential content. He/she was
the one who firs find the pattern that lead to the idea of adding C as the
constant value to the integral of a function, by using the definition of
anti-differential as the context. Followed by the activity in the fourth
meeting where RS1 could understand the idea of the activities were to
compare the wide area that were calculated by the prior knowledge
formula and by the integration formula using wall paper as the tools to
connect both formula. RS1 can solve the cost of wall paper that has to
be disposed in the challenging to cover wall with wall paper. Since RS1
can solve all the four problems in the tenth meeting, it means that RS1
mastery all the indicators of relational understanding and then the five
indicators of RME. The indicators of relational understanding and five
principles of RME also mastered by RS2, RS3, RS4, RS5, and RS6.

CONCLUSION AND SUGGESTION

Conclusion

These learning activities that give the students the opportunity to reinvent independently build the ability of students to find their own mistakes. The use of context makes them easier to find the mistakes. Compare to the students who had done exercises on procedural problems who still can't get the idea that the area under the x axis has to be a positive value. So, if student is an iceberg, then the design research can reveal the potential of the iceberg under the sea surface that is bigger than the potential of the iceberg above the sea surface. The other finding in this design research is the students’ works show that students try harder to solve the problems not just writing “I don’t know” in their answer sheet.

Suggestion

1. Suggestions for teachers are: a. Teachers’ role to guide students to follow the hypothetical learning trajectory. The consistency of teacher as facilitator has to be maintained, so the students realize that in the learning activity each students has to have an active role to understand the content and reinvent the concept independently. b. Teachers have to really pay attention on the direction of context changing to formal mathematics, and give the guidance to ensure the reinvention. 2. Suggestions for other researchers are: a. b. Wall paper installation requirement must be changed into hang it until the highest point of the curve. The other researcher can develop the local instructional theory in this design research such as learning using the multimedia in an online classroom.

REFERENCES